Visual-FIR for ozone modeling and prediction
نویسندگان
چکیده
Air pollution is one of the most important environmental problems in urban areas, being extremely critical in Mexico City. The main air pollution problem that has been identified in Mexico City metropolitan area is the formation of photochemical smog, primarily ozone. The study and development of modeling methodologies that allow the capturing of time series behavior becomes an important task. The present work aims to develop Fuzzy Inductive Reasoning (FIR) models using the Visual-FIR platform. FIR offers a model-based approach to modeling and predicting either univariate or multivariate time series. Visual-FIR offers an easy-friendly environment to perform this task. In this research, long term prediction of maximum ozone concentration in the centre region of Mexico City metropolitan area is performed. The data were registered every hour and include missing values. Two modeling perspectives are analyzed, i.e. monthly and seasonal models. The results show that the models identified capture the dynamic behavior of ozone contaminant in an accurate manner.
منابع مشابه
Visual-FIR: A new platform for modeling and prediction of dynamical Systems
In this research, a new platform for the Fuzzy Inductive Reasoning (FIR) methodology has been designed and developed under the Matlab environment. The new tool, named Visual-FIR, allows the identification of dynamic systems models in a user-friendly environment. FIR offers a model-based approach to modeling and predicting either univariate or multivariate time series. Previous uses of FIR had d...
متن کاملStatus and prediction of ozone as an air pollutant in Ahvaz City, Iran
In the present study, air quality analyses for ozone (O3) were conducted in Ahvaz, a city in the south of Iran. The measurements were taken from 2009 through 2010 in two different locations to prepare average data in the city. Relations between the air pollutant and some meteorological parameters were calculated statistically using the daily average data. The wind data (velocity, direction), re...
متن کاملStatus and preparation of prediction models for ozone as an air pollutant in Shiraz, Iran
In the present study, air quality analyses for ozone (O3) were conducted in Shiraz, a city in the south of Iran. The measurements were taken from 2011 through 2012 in two different locations to prepare average data in the city. The average concentrations were calculated for every 24 hours, each month and each season. Results showed that the highest concentration of ozone occurs generally in the...
متن کاملStatus and preparation of prediction models for ozone as an air pollutant in Shiraz, Iran
In the present study, air quality analyses for ozone (O3) were conducted in Shiraz, a city in the south of Iran. The measurements were taken from 2011 through 2012 in two different locations to prepare average data in the city. The average concentrations were calculated for every 24 hours, each month and each season. Results showed that the highest concentration of ozone occurs generally in the...
متن کاملShort-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network
Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...
متن کامل